let's find the components for the initial velocity
[tex]v_ix=2.35\cdot\cos (-22)=2.18[/tex][tex]v_iy=2.35\cdot\sin (-22)=-0.88_{}[/tex]then for the final velocity
[tex]v_fx=6.42\cdot\cos (50)=4.13[/tex][tex]v_fy=6.42\cdot\sin (50)=4.92[/tex]The table that agrees with the problem is A)
Then for the acceleration, we will use the next formula
[tex]a=\frac{v_f-v_i_{}}{t}[/tex]for the acceleration in x
[tex]a_x=\frac{v_fx-v_ix}{t}=\frac{4.13-2.18}{0.215}=9.06m/s^2[/tex]then for the acceleration in y
[tex]a_y=\frac{v_fy-v_iy}{t}=\frac{4.92-(-0.88)}{0.215}=26.97m/s^2[/tex]then we calculate the magnitude
[tex]a=\sqrt[]{9.06^2+26.97^2}=28.45\text{ m/s}^2[/tex]