Answer:
The measures of the two angles are 46° and 134°.
Explanation:
Let x and y be the two angles:
x+y=180
It is mentioned that the measure of one angle is 4 degrees less than three times the other.
Let:
y=3x-4
Then, we substitute y=3x-4 into x+y=180.
So,
[tex]\begin{gathered} x+y=180 \\ x+(3x-4)=180 \\ \text{Simplify and rearrange} \\ x+3x-4=180 \\ 4x=180+4 \\ 4x=184 \\ x=\frac{184}{4} \\ \text{Calculate} \\ x=46 \end{gathered}[/tex]We substitute x=46 into x+y=180. So,
[tex]\begin{gathered} x+y=180 \\ 46+y=180 \\ \text{Simplify and rearrange} \\ y=180-46 \\ \text{Calculate} \\ y=134 \end{gathered}[/tex]Therefore, the measures of the two angles are 46° and 134°.