Given
Circle of radius 15 cm and angle at the centre equal to 126 degree.
Find
(a) Perimeter of the paper is 63cm.
(b) Area of the paper OABC
(c) i) Draw a cone
ii) radius of circular base
iii) determine the height
Explanation
(a)
Perimeter of sector = Arc length ABC + AO + OC
Arc Length of ABC =
[tex]\begin{gathered} \frac{\theta}{360}\times2\Pi r \\ \frac{126}{360}\times2\times\frac{22}{7}\times15 \\ 33 \end{gathered}[/tex]so , perimeter = 33 +15 +15 = 63
Hence we proved that perimeter is 63 cm
(b) Area of sector =
[tex]\begin{gathered} \frac{\theta}{360}\times\Pi r^2 \\ \frac{126}{360}\times\frac{22}{7}\times15\times15 \\ 247.5 \end{gathered}[/tex](c) i)
ii) Circumference of base =
[tex]\begin{gathered} 2\Pi r=\text{33} \\ r=\frac{33\times7}{2\times22} \\ r=\frac{21}{4} \end{gathered}[/tex]iii) l = 15 cm, r= 21/7
By pythagoras theorem,
[tex]\begin{gathered} h^2=l^2-r^2 \\ h^2=15^2-(\frac{21}{4})^2 \\ h=\text{ 14.05} \end{gathered}[/tex]Final Answer
(a) 63
(b) 247.5