A box contains black chips and white chips. A person selects two chips without replacement. If the probability of selecting a black chip and a white chip is 15/56,and the probability of selecting a black chip on the first draw is 5/8,find the probability of selecting the white chip on the second draw,given that the first chip selected was a black chip

Respuesta :

Answer:

Explanations:

Probability is the likelihood or chance that an event will occur. Mathematically:

[tex]\text{Probability}=\frac{Expected\text{ outcome}}{total\text{ outcome}}[/tex]

According to the question, we are told that the probability of selecting a black chip on the first draw is 5/8, this shows that the total number of chips is 8 since it was a first draw (all chips are intact).

If the probability of selecting a black chip and a white chip is 24/56 without replacement, then;

[tex]\text{Probability (a black and a white)=Pr(a black c}hip\text{)}\times Pr(white)[/tex]

Substitute the given probability into the formula to have:

[tex]undefined[/tex]