Given data:
Area of plates:
[tex]A=5.10\times10^{-3}\text{ m}^2[/tex]Separation between the plates:
[tex]d=1.42\times10^{-5}\text{ m}[/tex]Potential difference:
[tex]V=125\text{ V}[/tex]The capacitance of the capacitor is given as,
[tex]C=\frac{A\epsilon_{\circ}}{d}[/tex]Here, ε_o is the permittivity of the free space.
Substituting all known values,
[tex]\begin{gathered} C=\frac{5.10\times10^{-3}\times8.85\times10^{-12}}{1.42\times10^{-5}} \\ =3.178\times10^{-9}\text{ F} \end{gathered}[/tex]The charge on the capacitor is given as,
[tex]Q=CV[/tex]Substituting all known values,
[tex]\begin{gathered} Q=3.178\times10^{-9}\times125 \\ =3.9725\times10^{-7}\text{ C} \end{gathered}[/tex]Therefore, the charge on the plates is 3.9725×10^-7 C.