If C = $19600, V = $ 15528 and r = 0.12, we have:
[tex]\begin{gathered} 15528=19600(1-0.12)^t \\ 15528=19600\cdot0.88^t \\ \frac{15528}{19600}=0.88^t \\ \frac{1941}{2450}=0.88^t \\ log(\frac{1,941}{2,450})=log(0.88^t) \\ log(\frac{1,941}{2,450})=t\cdot log(0.88^) \\ t=\frac{log(\frac{1,941}{2,450})}{log(0.88^)} \\ t=\frac{-0.101}{-0.056} \\ t\approx1.82\text{ years} \end{gathered}[/tex]