Respuesta :
Set
[tex]\begin{gathered} \mu_1=875,\sigma_1=80 \\ \text{and} \\ \mu_2=10000,\sigma=1500 \end{gathered}[/tex]a) The Z-score formula is
[tex]Z=\frac{x-\mu}{\sigma}[/tex]Therefore, in our case, if x=2000
[tex]\Rightarrow Z=\frac{2000-875}{80}=\frac{1125}{80}=14.0625[/tex]Using a Z-score table,
[tex]\begin{gathered} P(z\ge2000)=1-P(z<2000)\approx1-1=0 \\ \Rightarrow P(z\ge2000)=0 \end{gathered}[/tex]A value of 2000 hrs is 14 standard deviations away from the mean. The probability is practically zero.
b) Similarly, set x=5000; then,
[tex]Z=\frac{5000-10000}{1500}=-\frac{5000}{1500}=-3.333\ldots[/tex]Thus, using a z-score table
[tex]P(z\le5000)=0.0004[/tex]The probability is 0.0004=0.04%. It is quite improbable but not an impossible event.
c) According to the empirical rule 99.8% of the data lies within 3 standard deviations; thus,
[tex]\begin{gathered} Incandescent \\ \mu_1\pm3\sigma_1=\lbrack875-240,875+240\rbrack=\lbrack635,1115\rbrack \\ \text{CFL} \\ \mu_2\pm3\sigma_2=\lbrack10000-4500,10000+4500\rbrack=\lbrack5500,14500\rbrack \end{gathered}[/tex]The lifespan of 99% of all incandescent bulbs is between 635 and 1115 hrs, whereas that of all CFL bulbs is between 5500 and 14500 hrs.
d) If we randomly select a CFL, the most probably lifespan is the mean of the distribution, in other words, 10000 hrs.
The probability of an incandescent bulb lasting 10000 hrs is
[tex]\begin{gathered} Z=\frac{10000-875}{80}=114.0625 \\ \Rightarrow P(z\ge10000)=1-P(z<10000)=0 \end{gathered}[/tex]The event is practically impossible.