Given equation:
[tex]9x^2\text{ - 12x + 4 = 0}[/tex]Let's solve the question to identify the type of solution.
Using factorization method:
[tex]\begin{gathered} 9x^2\text{ - 12x + 4 =0} \\ 9x^2-6x\text{ -6x + 4 = 0} \\ 3x(3x-2)\text{ -2(3x-2)= 0} \\ (3x-2)(3x-2)\text{ =0} \end{gathered}[/tex]The solution is thus
[tex]\begin{gathered} 3x\text{ -2 = 0} \\ 3x\text{ = 2} \\ x\text{ = }\frac{2}{3} \end{gathered}[/tex]Hence, there is one solution and it is real.
Answer: 1 real (Option B)