Respuesta :
a)
Using conservation of energy for ball 1:
[tex]\begin{gathered} E1=E2 \\ K1+U1=K2+U2 \\ 0+m1gh=\frac{1}{2}m1v1^2 \end{gathered}[/tex]Solve for v1:
[tex]\begin{gathered} v1=\sqrt[]{2gh} \\ v1=\sqrt[]{2(9.8)(2.5)} \\ v1=7\frac{m}{s} \end{gathered}[/tex][tex]v1=v2^{\prime}-v1^{\prime}[/tex]Using conservation of momentum:
[tex]\begin{gathered} m1v1=m1(v2^{\prime}-v1^{\prime})+m2v2^{\prime} \\ v2^{\prime}=\frac{2m1v1}{(m1+m2)} \\ \end{gathered}[/tex]a)
m2 = 5 kg
[tex]v2^{\prime}=7\frac{m}{s}[/tex]so:
[tex]\begin{gathered} v1^{\prime}=7-7 \\ v1^{\prime}=0 \end{gathered}[/tex]so:
[tex]\begin{gathered} m1gh^{\prime}=\frac{1}{2}m1(v1^{\prime})^2 \\ h^{\prime}=0 \end{gathered}[/tex]If the stationary mass is 5.0 kg the height back up the ramp is 0 meters
b)
m2 = 10
[tex]v2^{\prime}=\frac{14}{3}\frac{m}{s}[/tex]so:
[tex]v1^{\prime}=-\frac{7}{3}\frac{m}{s}[/tex][tex]\begin{gathered} m1gh^{\prime}=\frac{1}{2}m1(v1^{\prime})^2 \\ h^{\prime}\approx0.2778m \end{gathered}[/tex]If the stationary mass is 10.0 kg the height back up the ramp is 0.2778 meters
c)
m2 = 500.00kg
[tex]v2^{\prime}=\frac{14}{101}\frac{m}{s}[/tex]so:
[tex]v1^{\prime}\approx-\frac{693}{101}\frac{m}{s}[/tex][tex]\begin{gathered} m1gh^{\prime}=\frac{1}{2}m1(v1^{\prime})^2 \\ h^{\prime}\approx2.4m \end{gathered}[/tex]If the stationary mass is 500.0 kg the height back up the ramp is 2.4 meters