Given that a triangle has sides of the following dimensions
[tex]25\frac{2}{5}cm,26\frac{9}{10}cm\text{ and 32}\frac{5}{8}cm[/tex]The diagram of the triangle can be seen below
To find the perimeter, P, of a triangle, the formula is
[tex]P=a+b+c_{}[/tex]Where
[tex]\begin{gathered} a=32\frac{5}{8}=\frac{261}{8}cm \\ b=26\frac{9}{10}=\frac{269}{10}cm\text{ and } \\ c=25\frac{2}{5}=\frac{127}{5}cm \end{gathered}[/tex]Substitute the values to find the perimeter, P, of the triangle
[tex]\begin{gathered} P=a+b+c_{} \\ P=\frac{261}{8}+\frac{269}{10}+\frac{127}{5}=\frac{1305+1076+1016}{40}=\frac{3397}{40}=84\frac{37}{40}cm \\ P=84\frac{37}{40}cm \end{gathered}[/tex]Hence, the perimeter, P, of the triangle is
[tex]84\frac{37}{40}cm[/tex]