Respuesta :

Answer:[tex]g^{-1}(x)=\frac{-7x-20}{5}[/tex]

Explanation:

Given the function:

[tex]g(x)=\frac{-5x-20}{7}[/tex]

To find the inverse function, let us first write it as:

[tex]y=\frac{-5x-20}{7}[/tex]

Make x the subject of the equation

[tex]\begin{gathered} -5x-20=7y \\ -5x=7y+20 \\ x=\frac{-7y-20}{5} \end{gathered}[/tex]

Replace x by y, and y by x to obtain the inverse function

[tex]y=\frac{-7x-20}{5}[/tex]

Where

[tex]y=g^{-1}(x)[/tex]