Respuesta :

Given: The function

[tex]y=3(x+4)^2+5[/tex]

To Determine: The equivalent function of the given function

Solution:

Step 1: Expand the parenthesis

[tex]\begin{gathered} y=3(x+4)^2+5 \\ (x+4)^2=(x+4)(x+4) \\ (x+4)^2=x(x+4)+4(x+4) \\ (x+4)^2=x^2+4x+4x+16 \\ (x+4)^2=x^2+8x+16 \end{gathered}[/tex]

Step 2: Substitute the expanded into the function

[tex]\begin{gathered} y=3(x+4)^2+5 \\ y=3(x^2+8x+16)+5 \\ y=3x^2+24x+48+5 \\ y=3x^2+24x+53 \end{gathered}[/tex]

Hence, the equivalent function to the given is y = 3x²+24x+53, OPTION C