Respuesta :

Given:

Area of box I = 48 cm²

Area of box 2 = 24 cm²

Area of box 3 = 48 cm²

Area of box 4 = 24 cm²

Area of box 5 = 72 cm²

Area of box 6 = 72 cm²

• Let's find the values which represent the dimensions of the prism.

Let L represent the length.

Let w represent the width

Let h represent the height.

Now, to find the surface area of a rectangular prism apply the formula:

A = 2(wL + Lh + wh)

Now, given each rectangular face, we have:

Area of length and width, Lw = 72 cm²

Area of length and height, Lh = 48 cm²

Area of width and height, wh = 24 cm²

Now to find the dimensions, we have:

[tex]\begin{gathered} \frac{Lh}{wh}=\frac{48}{24} \\ \\ \frac{L}{w}=2 \\ \\ L=2w \end{gathered}[/tex]

Now, substitute 2w for L in Lw:

[tex]\begin{gathered} Lw=72 \\ \\ 2w(w)=72 \\ \\ 2w^2=72 \\ \\ w^2=\frac{72}{2} \\ \\ w^2=36 \\ \\ \text{ take the square root of both sides:} \\ \sqrt{w^2}=\sqrt{36} \\ \\ w=6 \end{gathered}[/tex]

Therefore, the width is 6 cm.

Now, substitute 6 for w in wh:

[tex]\begin{gathered} wh=24 \\ \\ 6*h=24 \\ \\ Divide\text{ both terms by:} \\ \frac{6*h}{6}=\frac{24}{6} \\ \\ h=4 \end{gathered}[/tex]

Now, substitute 4 for h in Lh:

[tex]\begin{gathered} Lh=48 \\ \\ L*4=48 \\ \\ \text{ Divide both sides by 4:} \\ \frac{L*4}{4}=\frac{48}{4} \\ \\ L=12 \end{gathered}[/tex]

Therefore, the values which represent the dimensions are:

4, 6, 12

ANSWER:

4, 6, 12