Respuesta :
ANSWER:
Magnitude: 9.62 units
Direction: 62.1°
STEP-BY-STEP EXPLANATION:
Given:
F1 = 5.7 units
F2 = 5 units
Angle () = 38°
The vertical component of force F1 is:
[tex]\begin{gathered} F_{1y}=F_1\cdot\sin\theta \\ \\ \text{ We replacing:} \\ \\ F_{1y}=5.7\cdot\sin(38)=3.5j\text{ units} \end{gathered}[/tex]The horizontal component of force F1 is:
[tex]\begin{gathered} F_{1x}=F_1\cdot\cos\theta \\ \\ \text{ We replacing:} \\ \\ F_{1x}=5.7\cdot\cos(38)=4.5i\text{ units} \end{gathered}[/tex]Therefore, the total force F1 is:
[tex]\begin{gathered} F_1=F_{1x}+F_{1y} \\ \\ F_1=4.5i+3.5j \end{gathered}[/tex]The vertical component of force F2 is:
[tex]F_{2y}=5j\text{ units}[/tex]The horizontal component of force F2 is:
[tex]F_{2x}=0i[/tex]Therefore, the total force F2 is:
[tex]\begin{gathered} F_2=F_{2x}+F_{2y} \\ \\ F_2=0i+5j \end{gathered}[/tex]The resultant force (F1 + F2) would be:
[tex]\begin{gathered} F=F_1+F_2 \\ \\ F_=4.5i+3.5j+0i+5j \\ \\ F=4.5i+8.5j \end{gathered}[/tex]The magnitude of the resultant force is:
[tex]\begin{gathered} F=\sqrt{(F_x)^2+(F_y)^2} \\ \\ \text{ We replacing:} \\ \\ F=\sqrt{4.5^2+8.5^2} \\ \\ F=\sqrt{20.25+72.25}=\sqrt{92.5} \\ \\ F=9.62\text{ units} \end{gathered}[/tex]The direction is:
[tex]\begin{gathered} \theta =\tan ^{-1}\left(\frac{F_y}{F_x}\right) \\ \\ \text{ We replacing:} \\ \\ \theta =\tan ^{-1}\left(\frac{8.5}{4.5}\right) \\ \\ \theta=62.1\degree \end{gathered}[/tex]