Respuesta :
[tex]\begin{gathered} 1) \\ \text{surface area = Area 1+ Area }2+\text{ Area }3+\text{ Area }4+\text{ Area }5+\text{ Area }6 \\ \text{but } \\ \text{ Area 1}=\text{ Area }4 \\ \text{ Area }3=\text{ Area }6 \\ \text{ Area }2=\text{ Area }5 \\ \text{hence} \\ \text{surface area = 2Area 1+2 Area }2+\text{ 2Area }3 \\ \text{surface area = 2(Area 1+Area }2+\text{ Area }3) \\ \text{Area 1 =}5ft\cdot2ft=10ft^2 \\ \text{Area 2= 2ft}\cdot2ft=4ft^2 \\ \text{Area 3 = }5ft\cdot2ft=10ft^2 \\ \text{surface area = 2(}10ft^2\text{+}4ft^2+\text{ }10ft^2) \\ \text{surface area = 2(24}ft^2) \\ \text{surface area = }48ft^2 \\ \text{The surface area is }48ft^2 \\ \\ 2) \\ \text{surface area = Area 1+ Area }2+\text{ Area }3+\text{ Area }4+\text{ Area }5 \\ \text{but } \\ \text{ Area 1= Area }2 \\ \text{Area }3=\text{ Area }4 \\ \text{hence} \\ \text{surface area = 2Area 1}+\text{ 2Area }3+\text{ Area }5 \\ \text{surface area = 2(Area 1}+\text{ Area }3)+\text{ Area }5 \\ \text{Area 1=14cm}\cdot6\operatorname{cm}=84cm^2 \\ \text{Area 3 = }\frac{6\operatorname{cm}\cdot5.2\operatorname{cm}}{2}=15.6cm^2 \\ \text{Area 5=14cm}\cdot6\operatorname{cm}=84cm^2 \\ \text{surface area = 2(}84cm^2+\text{ }15.6cm^2)+\text{ }84cm^2 \\ \text{surface area = 283.2}cm^2 \\ \text{The surface area is 283.2}cm^2 \\ \\ 4) \\ \text{surface area = Area 1+ Area }2+\text{ Area }3+\text{ Area }4 \\ but\text{ } \\ \text{Area 1= Area }4=Area2 \\ \text{hence} \\ \text{surface area =3Area 1}+\text{ Area }3 \\ \text{Area 1 =}\frac{8\operatorname{cm}\cdot\text{ 7 cm}}{2}=28cm^2 \\ \text{Area }3\text{ =}\frac{8\text{ cm }\cdot8\text{ cm}}{2}=32cm^2 \\ \text{surface area =3(}28cm^2\text{)}+\text{ }32cm^2 \\ \text{surface area =116}cm^2 \\ \\ 6) \\ \text{surface area = Area 1+ Area }2+\text{ Area }3+\text{ Area }4+\text{ Area }5 \\ \text{but} \\ \text{Area 1= Area }2=\text{ Area }3=\text{ Area }4 \\ \text{hence} \\ \text{surface area = 4Area 1}+\text{ Area }5 \\ \text{Area 1 =}\frac{12ft\cdot10\text{ ft}}{2}=60ft^2 \\ \text{Area 5 = }12ft\cdot12ft=144ft^2 \\ \text{surface area = 4(}60ft^2\text{)}+\text{ }144ft^2 \\ \text{surface area = 384}ft^2 \\ \text{The surface area is 384}ft^2 \end{gathered}[/tex]