hello
to solve this question, we need to know if this sequence is an arithmetic or geometric progression
first term (a) = 64
common difference (d) = -7
the nth term of an arithemetic progression is given as
[tex]\begin{gathered} T_n=a+(n-1)d_{} \\ n=\text{nth term} \\ a=\text{first term} \\ d=\text{common difference} \end{gathered}[/tex]now let's substitute the values into the equation above
[tex]\begin{gathered} T_n=a+(n-1)d_{} \\ a=64 \\ d=-7 \\ T_{50}=64+(50-1)\times-7 \\ T_{50}=64+(49\times-7) \\ T_{50}=64+(-343) \\ T_{50}=64-343 \\ T_{50}=-279 \end{gathered}[/tex]from the calculations above, the 50th term of the sequence is -279