Given:
[tex]4\sqrt[]{3}\cdot10\sqrt[]{12}\cdot\sqrt[]{6}\cdot\sqrt[]{2}[/tex]Simplify the expression.
[tex]\begin{gathered} 4\sqrt[]{3}\cdot10\sqrt[]{12}\cdot\sqrt[]{6}\cdot\sqrt[]{2} \\ =4\sqrt[]{3}\cdot10\sqrt[]{4\times3}\cdot\sqrt[]{3\times2}\cdot\sqrt[]{2} \\ =4\sqrt[]{3}\cdot10(\sqrt[]{2^2})\sqrt[]{3}\cdot\sqrt[]{2}\cdot\sqrt[]{3}\cdot\sqrt[]{2} \\ =4\sqrt[]{3}\cdot10(2)\sqrt[]{3}\cdot2\sqrt[]{3} \\ =(4\times20\times2)(\sqrt[]{3})^2\cdot\sqrt[]{3} \\ =480\sqrt[]{3} \end{gathered}[/tex]Answer:
[tex]4\sqrt[]{3}\cdot10\sqrt[]{12}\cdot\sqrt[]{6}\cdot\sqrt[]{2}=480\sqrt[]{3}[/tex]