Solution:
Given the expression:
[tex]\frac{x^2+5x+2}{2x^2+2x-35}[/tex]A function f(x) has disconituity at x=a if
[tex]\lim_{x\to a}f(x)[/tex]exists and is finite.
The function is thus undefined at x=a or when
[tex]\lim_{x\to a}(f(x))\ne f(a)[/tex]From the given function, we have
[tex]\begin{gathered} \frac{x^2+5x+2}{x^2+2x-35} \\ factorize\text{ the denominator,} \\ \frac{x^2+5x+2}{x^2-5x+7x-35}=\frac{x^2+5x+2}{x(x-5)+7(x-5)} \\ \Rightarrow\frac{x^2+5x+2}{(x-5)(x+7)} \end{gathered}[/tex]The function is undefined at
[tex]\begin{gathered} x-5=0 \\ \Rightarrow x=5 \\ x+7=0 \\ \Rightarrow x=-7 \end{gathered}[/tex]Hence, there is discontinuity at
[tex]x=5,\text{ x=-7}[/tex]