1) Considering that the 1st property of Logarithms tells us:
[tex]\log _ab\text{ =c}\Leftrightarrow a^c=b[/tex]2) Let's evaluate that:
[tex]\begin{gathered} \log _{\csc (\frac{5\pi}{6})}(\frac{\csc \pi}{4})=x\Rightarrow\csc (\frac{5\pi}{6})^x=\csc (\frac{\pi}{4}) \\ \\ \csc (\frac{5\pi}{6})^x=\csc (\frac{\pi}{4}) \\ \log \csc (\frac{5\pi}{6})^x=\log \csc (\frac{\pi}{4}) \\ \text{x}\log \csc (\frac{5\pi}{6})^{}=\log (\sqrt[]{2}) \\ x\log (2)=\text{ log(}\sqrt[]{2}) \\ x=\frac{\log\sqrt[]{2}}{\log\text{ 2}} \\ x=\frac{1}{2} \end{gathered}[/tex]• Notice that we've descended that exponent x, to become a factor (3rd line).
,• Then divided both log with a common base, in this case, base 10.
3) Hence that equation yields 1/2 as its result.