Answer:
P(n) = 5 + 11n
n = 23 weeks
Explanation:
The equation for the population as a linear growth model has the form
P = P0 + an
Where P0 is the initial population, n is the number of weeks and a is the rate of increase per week. We know that P0 = 5, so
P = 5 + an
Additionally, when n = 7 the value of P = 82, so we can use this to find the value of a as follows
82 = 5 + a(7)
82 = 5 + 7a
82 - 5 = 5 + 7a - 5
77 = 7a
77/7 = 7a/7
11 = a
Therefore, the equation for the population after n weeks is
P(n) = 5 + 11n
Finally, to know the number of weeks to reach a population of 258, we need to replace P by 258 and solve for n, so
258 = 5 + 11n
258 - 5 = 5 + 11n - 5
253 = 11n
253/11 = 11n/11
23 = n
So, after 23 weeks the population will be 258.