We will have the following:
First, we are given:
*Mass of the breaker: 1.1kg
*Mass of water: 3.3 kg
*Mass of metallic alloy: 4.2kg
*Density of the alloy: 5300kg/m^3
*Density of water: 1000kg/m^3
Now, we find the volume of water displaced by the alloy:
[tex]V_{\text{w}}=4.2\operatorname{kg}\cdot\frac{m^3}{5300\operatorname{kg}}\Rightarrow V_w=\frac{21}{26500}m^3\Rightarrow V_w\approx7.92\cdot10^{-4}m^3[/tex]Then, from the reading in the hanging scale we will have the force experienced by the alloy due to the upthrust when placed in water, that is:
[tex]R=mg-\rho Vg[/tex]So:
[tex]R=(4.2\operatorname{kg})(9.8m/s^2)-(1000\operatorname{kg}/m^3)(\frac{21}{26500}m^3)(9.8m/s^2)[/tex][tex]\Rightarrow R=33.39396226\ldots N\Rightarrow R\approx33.4N[/tex]The reading on the lower scale is due to the weight of the water in the breaker and upthrust on the scale:
[tex]R=g(m_1+m_2)+\rho Vg[/tex]Finally:
[tex]R=(9.8m/s^2)(1.1\operatorname{kg}+3.3\operatorname{kg})+(1000\operatorname{kg}/m^3)(\frac{21}{26500}m^3)(9.8m/s^2)[/tex][tex]\Rightarrow R=50.886003774\ldots N\Rightarrow R\approx50.9N[/tex]So, the readin on the lower scale is approximately 50.9N.