In the given triangle ABC
[tex]BA=BC[/tex]Then the triangle is isosceles
In the isosceles triangle, the base angles are equal
Since [tex]m\angle A=m\angle C[/tex]Since m[tex]m\angle A=62^{\circ}[/tex]In any triangle the sum of angles is 180 degrees, then
[tex]m\angle A+m\angle B+m\angle C=180^{\circ}[/tex]Substitute angles A and C by 62
[tex]\begin{gathered} 62+m\angle B+62=180 \\ \\ m\angle B+124=180 \end{gathered}[/tex]Subtract 124 from both sides
[tex]\begin{gathered} m\angle B+124-124=180-124 \\ \\ m\angle B=56^{\circ} \end{gathered}[/tex]The answer is b