Respuesta :
Given the data set:
[tex]\lbrace57,53,53,71,73,57,61,58,78,64,54,69,56,58,49,56,53,52,82,62,61,60,71,75,60\rbrace[/tex]• You can find the Mean by adding all the values and dividing the sum by the number of values in the data set:
[tex]Mean=\frac{57+53+53+71+73+57+61+58+78+64+54+69+56+58+49+56+53+52+82+62+61+60+71+75+60}{25}[/tex][tex]Mean\approx61.72[/tex]• By definition the term for the third quartile can be found with this formula:
[tex]\frac{3}{4}(n+1)[/tex]Where "n" is the number of observations.
In this case:
[tex]n=25[/tex]Then:
[tex]\frac{3}{4}(25+1)\approx19.5[/tex]Since it is an integer, you get that the position of the terms is:
[tex]Q_3=\frac{69+71}{2}=70[/tex]Because, when you order the data set, 69 is the 19th value and 71 is the 20th value. Then, the third quartile is the average between them:
[tex]\lbrace49,52,53,53,53,54,56,56,57,57,58,58,60,60,61,61,62,64,69,71,71,73,75,78,82\rbrace[/tex]• By definition:
[tex]IQR=Q_3-Q_1[/tex]And the term position of the first quartile is found with:
[tex]\frac{n+1}{4}[/tex]You get:
[tex]\frac{25+1}{4}=6.5[/tex]Therefore, you can determine that:
[tex]Q_1=\frac{54+56}{2}=55[/tex]Then:
[tex]IQR=70-55=15[/tex]• By definition, the Five-Number Summary is:
- The minimum value:
[tex]Minimum=49[/tex]- The first quartile:
[tex]Q_1=55[/tex]- The median:
[tex]Median=60[/tex]- The third quartile:
[tex]Q_3=70[/tex]- The maximum value:
[tex]Maximum=82[/tex]Hence, the answers are:
• Mean:
[tex]Mean\approx61.72[/tex]• IQR:
[tex]IQR=15[/tex]• Five-Number Summary:
[tex]Minimum=49[/tex][tex]Q_1=55[/tex][tex]Median=60[/tex][tex]Q_3=70[/tex][tex]Maximum=82[/tex]• Third quartile:
[tex]Q_3=70[/tex]