{57, 53, 53, 71, 73, 57, 61, 58, 78. 64, 54, 69, 56, 58, 49, 56, 53, 52, 82, 62, 61, 60, 71, 75, 60} Whats the mean?. and the iqr? what is the five number summary? what is Q3? The Median is 60.

Respuesta :

Given the data set:

[tex]\lbrace57,53,53,71,73,57,61,58,78,64,54,69,56,58,49,56,53,52,82,62,61,60,71,75,60\rbrace[/tex]

• You can find the Mean by adding all the values and dividing the sum by the number of values in the data set:

[tex]Mean=\frac{57+53+53+71+73+57+61+58+78+64+54+69+56+58+49+56+53+52+82+62+61+60+71+75+60}{25}[/tex][tex]Mean\approx61.72[/tex]

• By definition the term for the third quartile can be found with this formula:

[tex]\frac{3}{4}(n+1)[/tex]

Where "n" is the number of observations.

In this case:

[tex]n=25[/tex]

Then:

[tex]\frac{3}{4}(25+1)\approx19.5[/tex]

Since it is an integer, you get that the position of the terms is:

[tex]Q_3=\frac{69+71}{2}=70[/tex]

Because, when you order the data set, 69 is the 19th value and 71 is the 20th value. Then, the third quartile is the average between them:

[tex]\lbrace49,52,53,53,53,54,56,56,57,57,58,58,60,60,61,61,62,64,69,71,71,73,75,78,82\rbrace[/tex]

• By definition:

[tex]IQR=Q_3-Q_1[/tex]

And the term position of the first quartile is found with:

[tex]\frac{n+1}{4}[/tex]

You get:

[tex]\frac{25+1}{4}=6.5[/tex]

Therefore, you can determine that:

[tex]Q_1=\frac{54+56}{2}=55[/tex]

Then:

[tex]IQR=70-55=15[/tex]

• By definition, the Five-Number Summary is:

- The minimum value:

[tex]Minimum=49[/tex]

- The first quartile:

[tex]Q_1=55[/tex]

- The median:

[tex]Median=60[/tex]

- The third quartile:

[tex]Q_3=70[/tex]

- The maximum value:

[tex]Maximum=82[/tex]

Hence, the answers are:

• Mean:

[tex]Mean\approx61.72[/tex]

• IQR:

[tex]IQR=15[/tex]

• Five-Number Summary:

[tex]Minimum=49[/tex][tex]Q_1=55[/tex][tex]Median=60[/tex]

[tex]Q_3=70[/tex]

[tex]Maximum=82[/tex]

• Third quartile:

[tex]Q_3=70[/tex]