Answer:
x^4 + y^4 + 2x^2 y^2
x^4 + 4x^2y^2
x^2 (x^2 + 4y^2 )
Explanation:
Expanding the the expression gives
[tex]\begin{gathered} (x^2+y^2)^4=(x^2)^2+(y^2)^2+2(x^2)(y^2) \\ =\boxed{x^4+y^4+2x^2y^2\text{.}} \end{gathered}[/tex]Simplifying the Left-hand side gives
[tex]\begin{gathered} x^4+y^4+2x^2y^2+2x^2y^2-y^4 \\ =\boxed{x^4+4x^2y^2\text{.}} \end{gathered}[/tex]Finally, factoring out x^2 from the left-hand side gives
[tex]x^4+4x^2y^2=\boxed{x^2\mleft(x^2+4y^2\mright)\text{.}}[/tex]