Perimeter of the equilateral triangle = 3(s + 6) inches
Perimeter of the equilateral triangle = 3s + 18 inches
Explanation:Given:
One of the sides of an equilateral triangle = (s + 6)
To find:
2 different equivalent expressions that represent the perimeter of the triangle
To determine the expression, we need to apply the formula for the perimeter of an equilateral triangle
[tex]\begin{gathered} Perimeter\text{ of equilateral triangle = sum of all 3 sides} \\ since\text{ all sides of an equilateral triangle are equal,} \\ Perimeter\text{ = 3}\times\text{ one of the side} \end{gathered}[/tex][tex]\begin{gathered} one\text{ of the side = s + 6} \\ \\ Perimter\text{ = 3 }\times(s\text{ + 6\rparen} \\ Perimeter\text{ of the equilateral triangle = 3\lparen s + 6\rparen inches} \end{gathered}[/tex]Another expression for the perimeter:
[tex]\begin{gathered} Perimeter\text{ = 3\lparen s + 6\rparen} \\ Expanding\text{ the parenthesis using distributive property:} \\ Perimeter\text{ = 3\lparen s\rparen + 3\lparen6\rparen} \\ Perimeter\text{ of the equilateral triangle = 3s + 18 inches} \end{gathered}[/tex]