Step:
Concept:
First, find the inverse of subtraction which is addition
x + 3
Step 2:
The multiplicative inverse is division, hence, you will divide x + 3 by 5.
Therefore, we have
[tex]\begin{gathered} y\text{ = }\frac{x\text{ + 3}}{5} \\ \end{gathered}[/tex]The inverse of the function is given below.
[tex]f^{-1}(x)\text{ = }\frac{x\text{ + 3}}{5}[/tex]Method 2
[tex]\begin{gathered} \text{If f(x) = 5x - 3} \\ \text{let y = 5x - 3} \\ \text{Make x subject of the formula} \\ \text{y + 3 = 5x} \\ x\text{ = }\frac{y\text{ + 3}}{5} \\ \text{Write the inverse of f(x) by changing y to x} \\ f^{-1}(x)\text{ = }\frac{x\text{ + 3}}{5} \end{gathered}[/tex]