Given
Formula for the length of an arc
[tex]\begin{gathered} Measureof\text{Arc of a circle=}\frac{\theta}{360}\times2\pi r \\ \\ \end{gathered}[/tex]Parameters;
[tex]\begin{gathered} \theta=?\text{ , r=1m} \\ \text{measure of arc =}\frac{\pi}{9} \end{gathered}[/tex]We can substitute into the formula
[tex]\begin{gathered} \frac{\pi}{9}=\frac{\theta}{360}\times2\times\pi\times1 \\ \\ \frac{\pi}{9}=\frac{2\theta\pi}{360} \\ \text{cross multiply} \\ 18\theta\pi=360\pi \\ divide\text{ both sides by 18}\pi \\ \frac{18\theta\pi}{18\pi}=\frac{360\pi}{18\pi} \\ \theta=20^0 \end{gathered}[/tex]Now, change to radian
[tex]\frac{\pi}{180}\times20^0=\frac{20^0\pi}{180^0}=\frac{\pi}{9}[/tex]The final answer
[tex]\frac{\pi}{9}[/tex]