Answer:
y = 2, y = -2, y = i √11, y = - i √ 11
Explanation:
To solve the equation for y, we first make the substitution x = y^2. Doing this we write
[tex]x^2+7x-44=0[/tex]The above can be written as
[tex](x-4)(x+11)=0[/tex]Which gives two equations
[tex]\begin{gathered} x-4=0 \\ x+11=0 \end{gathered}[/tex]Substituting back x = y^2 gives
[tex]\begin{gathered} y^2-4=0\rightarrow y=-2,y=2 \\ x^2+11=0\rightarrow y=i\sqrt[]{11},y=-i\sqrt[]{11} \end{gathered}[/tex]Hence, to summarize, the solution to the equation is
[tex]\begin{gathered} y=-2,y=2 \\ y=i\sqrt[]{11},y=-i\sqrt[]{11} \end{gathered}[/tex]