Consider the figure below.MGiven:PM 2PN, LM I MN,MNI ONLN bisects ZMNO, OM bisects LMNAMPL XANPO?Which of the following statements is enough to prove

Respuesta :

Since PM=PN

And

[tex]LM\perp MN[/tex]

While

[tex]MN\perp ON[/tex]

We can assume that

[tex]\begin{gathered} LN=OM\text{ and bisect each other} \\ \text{Therefore,} \\ PM=OP\text{ and }PN=LP \end{gathered}[/tex]

Then we can conclude that

[tex]\begin{gathered} LP=PO\text{ ( Isosceles triangle theorem)} \\ \angle\text{MPL}=\angle NPO(\text{ Vertically opposite angles)} \\ \text{hence,} \\ \Delta MPL=\Delta NPO(By\text{ sides angle side)} \end{gathered}[/tex]

Therefore,

The correct answer IS OPTION C