The area of the rectangle is;
[tex]36\sqrt[]{3\text{ }}\text{ sq cm}[/tex]Here, we want to find the area of the rectangle
To do this, we will have to multiply the length of the sides
Mathematically, we have this as follows;
[tex]\begin{gathered} \text{Area = Length }\times\text{ Width} \\ \text{Area = 6 cm }\times\text{ 6}\sqrt[]{3\text{ }}\text{ cm} \\ =\text{ 36}\sqrt[]{3}\text{ sq cm} \end{gathered}[/tex][tex]\begin{gathered} 6\times6\text{ = 36} \\ \sqrt[]{6}\text{ }\times\text{ 6 = 6}\sqrt[]{6} \\ \sqrt[]{6}\text{ }\times\text{ }\sqrt[]{6}\text{ = 6} \\ 6\sqrt[]{6}\text{ }\times\text{ 6}\sqrt[]{6}\text{ = (6}\times6)\times(\sqrt[]{6\text{ }}\text{ }\times\text{ }\sqrt[]{6}\text{ ) = 36}\times6\text{ = 216} \\ \sqrt[]{3}\text{ }\times\text{ }\sqrt[]{2\text{ }}\text{ = }\sqrt[]{\text{ (3}\times2)}\text{ = }\sqrt[]{6} \\ 7\sqrt[]{3}\text{ }\times\text{ 8}\sqrt[]{7\text{ }}\text{ = (7}\times8\text{ )}\times\text{ (}\sqrt[]{3}\text{ }\times\sqrt[]{7\text{ }}\text{ ) = 56}\sqrt[]{21} \end{gathered}[/tex]