Given:
There are given that the area of the shaded circular sector is:
[tex]30\pi[/tex]Explanation:
To find the central angle, we need to use the formula of area of the sector:;
So,
From the formula of area of the sector:
[tex]Area\text{ of sector=}\frac{central\text{ angle}}{360^{\circ}}\times\pi r^2[/tex]Then,
Put the value of area and radius into the above formula;
So,
[tex]\begin{gathered} Area\text{ of sector=}\frac{central\text{ angle}}{360^{^{\circ}}}\times\pi r^2 \\ 30\pi=\frac{centralangle}{360}\pi\times(10)^2 \end{gathered}[/tex]Then,
[tex]\begin{gathered} 30\pi=\frac{centralangle}{360}\pi(10)^{2} \\ 3=\frac{centralangle}{36} \\ central\text{ angle=36}\times3 \\ central\text{ angle=108}^{\circ} \end{gathered}[/tex]Final answer:
hence, the central angle is 108 degrees.