We are given the following expression:
[tex]\sqrt[]{81x^2}[/tex]To simplify this expression we will use the following property of radicals:
[tex]\sqrt[]{ab}=\sqrt[]{a}\sqrt[]{b}[/tex]Applying the property we get:
[tex]\sqrt[]{81x^2}=\sqrt[]{81}\sqrt[]{x^2}[/tex]Now, the first radical is equal to 9 since 9 x 9 = 81, therefore, we get:
[tex]\sqrt[]{81x^2}=\sqrt[]{81}\sqrt[]{x^2}=9\sqrt[]{x^2}[/tex]For the second radical we will use the following property of absolute values:
[tex]\lvert x\rvert=\sqrt[]{x^2}[/tex]Replacing we get:
[tex]\sqrt[]{81x^2}=\sqrt[]{81}\sqrt[]{x^2}=9\sqrt[]{x^2}=9\lvert x\rvert[/tex]Therefore, the expression reduces to the product of 9 and the absolute value of "x".