Solve for t using quadratic formula:
[tex]\begin{gathered} t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \end{gathered}[/tex]Where:
[tex]\begin{gathered} a=-16 \\ b=45 \\ c=75 \end{gathered}[/tex]so:
[tex]\begin{gathered} t=\frac{-45\pm\sqrt[]{45^2-4(-16)(75)}}{2(-16)} \\ t=\frac{-45\pm5\sqrt[]{273}}{-32} \\ so\colon \\ t\approx-1.175s \\ or \\ t\approx3.988s \end{gathered}[/tex]We take the positive time, therefore:
Answer:
t = 3.988s
The object will hit the ground after approximately 3.988 seconds.
We can also say that the object will remain in the air for less than 4 seconds.