Respuesta :
Lest first we hte sine theorem to relate the given measures:
[tex]\frac{\sin (\theta)}{30}=\frac{\sin(90^{\circ})}{\sqrt[]{x^2+30^2}}[/tex]x represents the distance from the boat to the shore.
[tex]\frac{\sin (\theta)}{30}=\frac{1}{\sqrt[]{x^2+30^2}}[/tex][tex]\frac{\sin(\theta)}{1}=\frac{30}{\sqrt[]{x^2+30^2}}[/tex][tex]\sin (\theta)=\frac{30}{\sqrt[]{x^2+30^2}}[/tex][tex]\theta=\sin ^{-1}(\frac{30}{\sqrt[]{x^2+30^2}})[/tex]Then we must calculate the derivative in order to know the rate of change at a certain point.
[tex]\frac{d}{dx}(\sin ^{-1}(\frac{30}{\sqrt[]{x^2+30^2}}))=-\frac{30x}{\sqrt[]{\frac{x^2}{x^2+900}}\cdot(x^2+900)^{\frac{3}{2}}}[/tex]To find how fast is the angle of depression of the telescope is changing when the boat is 200 meters from shore, replace by 200 on the derivative:
[tex]-\frac{30\cdot200}{\sqrt[]{\frac{200^2}{200^2^{}+900}}\cdot(200^2+900)^{\frac{3}{2}}}=-0.0007\text{ rad/s}[/tex]