Step 1: Define the formula
The formula for finding the average rate of change is :
[tex]\text{Average rate of change = }\frac{y_2-y_1}{x_2-x_1}[/tex]Step 2: Identify the coordinates of the points on the line
A(-3, -1), B(6, 2)
Step 3: Apply the formula
[tex]\begin{gathered} \text{Average rate of change = }\frac{2-(-1)}{6-(-3)} \\ =\text{ }\frac{2\text{ + 1}}{6\text{ + 3}} \\ =\text{ }\frac{3}{9} \\ =\text{ }\frac{1}{3} \end{gathered}[/tex]Hence, the average rate of change is 1/3
Answer: Option A