Respuesta :

Step 1: Define the formula

The formula for finding the average rate of change is :

[tex]\text{Average rate of change = }\frac{y_2-y_1}{x_2-x_1}[/tex]

Step 2: Identify the coordinates of the points on the line

A(-3, -1), B(6, 2)

Step 3: Apply the formula

[tex]\begin{gathered} \text{Average rate of change = }\frac{2-(-1)}{6-(-3)} \\ =\text{ }\frac{2\text{ + 1}}{6\text{ + 3}} \\ =\text{ }\frac{3}{9} \\ =\text{ }\frac{1}{3} \end{gathered}[/tex]

Hence, the average rate of change is 1/3

Answer: Option A