Solution:
Given:
[tex]\begin{gathered} The\text{ length of the room floor is 18 ft} \\ The\text{ width of the room floor is }x \end{gathered}[/tex]
Considering the right triangle KLM,
To get the width (x), we use the Pythagoras theorem.
[tex]\begin{gathered} 18^2+x^2=25^2 \\ x^2=25^2-18^2 \\ x^2=625-324 \\ x^2=301 \\ x=\sqrt{301} \\ x=17.35ft \\ \\ Hence,\text{ the width is 17.35ft} \end{gathered}[/tex]
The area of the bedroom floor is;
[tex]\begin{gathered} A=l\times w \\ A=18\times17.35 \\ A=312.3ft^2 \end{gathered}[/tex]
Therefore, the area of Felipe's bedroom floor to the nearest tenth is 312.3 square feet.