SOLUTION:
Step 1:
In this question, we are given the following:
Step 2:
a) What is the largest area possible for the garden?
Now, let the length of the rectangular plot be 54 -2x,
and the width of the rectangular plot be x,
so that:
[tex]\begin{gathered} \text{Area = (54 -2x) x = 54 x -2x}^2 \\ \frac{dA}{dx}=\text{ 54 - 4x = 0} \\ We\text{ have that:} \\ 54\text{ = 4x } \\ \text{Divide both sides by 4, we have that:} \\ \text{x = }\frac{54}{4} \\ \text{x = 13. 5} \end{gathered}[/tex]Then, the largest area possible for the garden will be:
[tex]\text{Area = 54x -2x}^2=54(13.5)-2(13.5)^2=729-364.5=364.5ft^2[/tex]b) What width will produce the maximum area?
[tex]Width,\text{ x = 13. 5 fe}et[/tex]c) The length of the garden that will produce the maximum area:
[tex]\text{Length = 54 - 2x = 54 - 2( 13. 5) = 54 -27 = 27 fe}et[/tex]