Quadratics are in the general form:
[tex]ax^2+bx+c[/tex]For completing the square, we use:
[tex](x+\frac{b}{2})^2=c+(\frac{b}{2})^2[/tex]Now, we have:
[tex]\begin{gathered} (x+\frac{12}{2})^2=-23+(\frac{12}{2})^2 \\ (x+6)^2=-23+(6)^2 \\ (x+6)^2=13 \end{gathered}[/tex]From here, we can easily solve for x with a little algebra. Shown below:
[tex]\begin{gathered} \sqrt[]{(x+6)^2}=\pm\sqrt[]{13} \\ x+6=\pm\sqrt[]{13} \\ x=-6\pm\sqrt[]{13} \end{gathered}[/tex]The answer(s) are:
[tex]\begin{gathered} x=-6+\sqrt[]{13} \\ x=-6-\sqrt[]{13} \end{gathered}[/tex]For further clarification
Form:
[tex](x+\frac{12}{2})^2=13[/tex]