Using the perpendicular bisector theorem, we have the following:
[tex]GF=GH[/tex]then we can write the following equation:
[tex]3x-8=16[/tex]solving for x, we have:
[tex]\begin{gathered} 3x-8=16 \\ \Rightarrow3x=16+8=24 \\ \Rightarrow x=\frac{24}{3}=8 \\ \\ x=8 \end{gathered}[/tex]we get x = 8. Then, the length of FH is:
[tex]\begin{gathered} FH=FJ+JH=8+8=16 \\ \Rightarrow FH=16 \end{gathered}[/tex]therefore, FH = 16