Respuesta :

We can write the line equation as:

[tex]y=mx+b[/tex]

And to find the values of the coefficients 'm', and 'b', we can use the intercepts(where the line cuts the x and y axis) on the graph. Looking at the graph, we have the following interceptions:

[tex]\lbrace(0,2),(4,0)\rbrace[/tex]

Plugging those values in our equation, we have:

[tex]\begin{cases}2=b \\ 0=4m+b\end{cases}\Rightarrow4m=-2\Rightarrow m=-\frac{1}{2}[/tex]

Writing the line equation in slope intercept form, we have the following:

[tex]y=-\frac{1}{2}x+2[/tex]

Rewriting this equation:

[tex]\begin{gathered} y=-\frac{1}{2}x+2 \\ \Rightarrow\frac{1}{2}x+y=2 \\ \Rightarrow x+2y=4 \end{gathered}[/tex]

And this is our final answer. The line equation is

[tex]x+2y=4[/tex]