Respuesta :
Explanation:
Consider the following right triangle:
To find the missing sides x and y, we can apply the following trigonometric ratios:
[tex]\cos(60^{\circ})=\frac{adjacent\text{ side to the angle 60}^{\circ}}{Hypotenuse}[/tex][tex]\sin(60^{\circ})=\frac{opposite\text{ side to the angle 60}^{\circ}}{Hypotenuse}[/tex]and
[tex]\tan(60^{\circ})=\frac{opposite\text{ side to the angle 60}^{\circ}}{adjacent\text{ side to the angle 60}^{\circ}}[/tex]thus, applying the data of the problem to the last equation, we get:
[tex]\tan(60^{\circ})=\frac{opposite\text{ side to the angle 60}^{\circ}}{adjacent\text{ side to the angle 60}^{\circ}}=\frac{15}{y}[/tex]that is:
[tex]\tan(60^{\circ})=\frac{15}{y}[/tex]solving for y, we obtain:
[tex]y=\frac{15}{\tan(60^{\circ})}=\frac{15}{\sqrt{3}}[/tex]On the other hand, applying the above data to the first equation, we get:
[tex]\cos(60^{\circ})=\frac{adjacent\text{ side to the angle 60}^{\circ}}{Hypotenuse}=\frac{y}{x}=\frac{15}{\sqrt{3}}\text{ }\cdot\frac{1}{x}[/tex]or
[tex]\cos(60^{\circ})=\frac{15}{\sqrt{3}\text{ x}}\text{ }[/tex]solving for x, we obtain:
[tex]x=\frac{15}{\sqrt{3}\cdot\cos(60)}=\text{ }\frac{15}{\sqrt{3\text{ }}\cdot1/2}=\frac{2(15)}{\sqrt{3}}=\frac{30}{\sqrt{3}}[/tex]we can conclude that the correct answer is:
Answer:[tex]x=\frac{30}{\sqrt{3}}[/tex]and
[tex]y=\frac{15}{\sqrt{3}}[/tex]