Respuesta :

Explanation:

Consider the following right triangle:

To find the missing sides x and y, we can apply the following trigonometric ratios:

[tex]\cos(60^{\circ})=\frac{adjacent\text{ side to the angle 60}^{\circ}}{Hypotenuse}[/tex]

[tex]\sin(60^{\circ})=\frac{opposite\text{ side to the angle 60}^{\circ}}{Hypotenuse}[/tex]

and

[tex]\tan(60^{\circ})=\frac{opposite\text{ side to the angle 60}^{\circ}}{adjacent\text{ side to the angle 60}^{\circ}}[/tex]

thus, applying the data of the problem to the last equation, we get:

[tex]\tan(60^{\circ})=\frac{opposite\text{ side to the angle 60}^{\circ}}{adjacent\text{ side to the angle 60}^{\circ}}=\frac{15}{y}[/tex]

that is:

[tex]\tan(60^{\circ})=\frac{15}{y}[/tex]

solving for y, we obtain:

[tex]y=\frac{15}{\tan(60^{\circ})}=\frac{15}{\sqrt{3}}[/tex]

On the other hand, applying the above data to the first equation, we get:

[tex]\cos(60^{\circ})=\frac{adjacent\text{ side to the angle 60}^{\circ}}{Hypotenuse}=\frac{y}{x}=\frac{15}{\sqrt{3}}\text{ }\cdot\frac{1}{x}[/tex]

or

[tex]\cos(60^{\circ})=\frac{15}{\sqrt{3}\text{ x}}\text{ }[/tex]

solving for x, we obtain:

[tex]x=\frac{15}{\sqrt{3}\cdot\cos(60)}=\text{ }\frac{15}{\sqrt{3\text{ }}\cdot1/2}=\frac{2(15)}{\sqrt{3}}=\frac{30}{\sqrt{3}}[/tex]

we can conclude that the correct answer is:

Answer:

[tex]x=\frac{30}{\sqrt{3}}[/tex]

and

[tex]y=\frac{15}{\sqrt{3}}[/tex]

Ver imagen IzayahR514637