We have the next equation
[tex]-3=-6x^2+7x[/tex]First, we need to set the equation to zero
[tex]6x^2-7x-3=0[/tex]then we will use the general formula to find the roots of a second-degree equation
[tex]x_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]where
a=6
b=-7
c=-3
then we substitute the values
[tex]x_{1,2}=\frac{7\pm\sqrt[]{(-7)^2-4(6)(-3)}}{2(6)}[/tex][tex]\begin{gathered} x_{1,2}=\frac{7\pm\sqrt[]{49^{}+72}}{12} \\ x_{1,2}=\frac{7\pm\sqrt[]{121}}{12} \\ x_{1,2}=\frac{7\pm11}{12} \\ \end{gathered}[/tex][tex]x_1=\frac{7+11}{12}=\frac{18}{12}=\frac{3}{2}[/tex][tex]x_2=\frac{7-11}{12}=\frac{-4}{12}=-\frac{1}{3}[/tex]the roots of the equation are x=3/2, x=-1/3