Solution:
Given;
[tex]14\cdot10^{0.5w}=100[/tex]Divide both sides by 14, we have;
[tex]\begin{gathered} \frac{14\cdot10^{0.5w}}{14}=\frac{100}{14} \\ \\ 10^{0.5w}=\frac{50}{7} \end{gathered}[/tex]Take the logarithm of both sides; we have;
[tex]\log_{10}(10)^{0.5w}=\log_{10}(\frac{50}{7})[/tex]Applying logarithmic laws;
[tex]0.5w=\log_{10}(\frac{50}{7})[/tex]Divide both sides by 0.5;
[tex]\begin{gathered} \frac{0.5w}{0.5}=\frac{\log_{10}(\frac{50}{7})}{0.5} \\ \\ w=\frac{\operatorname{\log}_{10}(\frac{50}{7})}{0.5} \end{gathered}[/tex](b)
[tex]\begin{gathered} w=\frac{\operatorname{\log}_{10}(\frac{50}{7})}{0.5} \\ \\ w\approx1.708 \end{gathered}[/tex]