ANSWER
EXPLANATION
First, we have to fill in the table. To do so, we will plug the x-values into the function to find the corresponding value of y,
[tex]\begin{cases}y=-3\cdot3^{-3}=-\frac{3}{3^3}=-\frac{3}{27}=-\frac{1}{9} \\ \\ y=-3\cdot3^{-2}=-\frac{3}{3^2^{}}=-\frac{3}{9}=-\frac{1}{3} \\ \\ y=-3\cdot3^{-1}=-\frac{3}{3^1}=-\frac{3}{3}=-1 \\ \\ y=-3\cdot3^0=-3\cdot1=-3 \\ \\ y=-3\cdot3^1=-3\cdot3=-9 \\ \\ y=-3\cdot3^2=-3\cdot9=-27 \\ \\ y=-3\cdot3^3=-3\cdot27=81\end{cases}[/tex]So, the table is,
Next, we have to graph all of these points in the coordinate plane. The last one cannot be graphed because y = -81 does not fit in the given coordinate plane. Also, the first two values won't be very accurate because of the scale of the y-axis. The graphed points are,
And finally, to graph the function we join the dots with a line.