coordiantes of the circle center = (h, k) = (0, 2)
h = 0, k = 2
r = 2
[tex]\begin{gathered} Standardform\text{ of the equation of circle:} \\ \text{ }(x-h)^2+(y-k)^2=r^2 \end{gathered}[/tex][tex]\begin{gathered} \text{ }(x-0)^2+(y-2)^2=2^2 \\ x^2+(y-2)^2\text{ = 4} \end{gathered}[/tex][tex]\begin{gathered} \text{General form of the equation of circle:} \\ x^2+y^2\text{ }+\text{ 2gx + 2fy + c = 0} \end{gathered}[/tex][tex]\begin{gathered} center\text{ of circle = (-g, -f)} \\ given\text{ }center\text{ of circle = (0, 2)} \\ -g\text{ = 0 } \\ g\text{ = 0} \\ -f\text{ = 2} \\ f\text{ = -2} \end{gathered}[/tex][tex]\begin{gathered} radius\text{ = }\sqrt[]{g^2+f^2-c} \\ 2\text{ = }\sqrt[]{0^2+(-2)^2\text{ + c}} \\ 2\text{ = }\sqrt[]{0+4\text{ + c}} \\ \text{square both sides:} \\ 2^2\text{ = }4\text{ + c} \\ 4\text{ = 4 + c} \\ c\text{ = 4-4 = 0} \end{gathered}[/tex][tex]\begin{gathered} \text{General form of the equation of circle:} \\ x^2+y^2\text{ }+\text{ 2(0)x + 2(-2)y + 0 = 0} \\ x^2+y^2\text{ - 4y = 0} \end{gathered}[/tex]plotting the graph: