The surface area of a cone with diameter d and height h is given by:
[tex]A=\pi(\frac{d}{2})^2+\pi\cdot\frac{d}{2}\cdot\sqrt[]{h^2+(\frac{d}{2})^2}[/tex]For d = 5 cm and h = 11.4 cm, we have:
[tex]\begin{gathered} A=\pi(\frac{5}{2})^2+\pi\frac{5}{2}\sqrt[]{11.4^2+(\frac{5}{2})^2} \\ A=\frac{25}{2}\pi+\pi\frac{25}{2}\sqrt[]{129.96+\frac{25}{2}} \\ A=12.5\pi+12.5\cdot\pi\cdot\sqrt[]{142.46} \\ A\approx12.5\pi+12.5\cdot11.94\cdot\pi \\ A\approx508cm^2 \end{gathered}[/tex]