We will have the following:
First, we transform from nm to m,t that is:
[tex]\lambda=413nm\cdot\frac{m}{1\cdot10^9nm}\Rightarrow\lambda=4.13\cdot10^{-7}m[/tex]Then:
[tex]4.13\cdot10^{-7}m=\frac{3.0\cdot10^8m/s}{f}\Rightarrow f=\frac{3.0\cdot10^8m/s}{4.13\cdot10^{-7}m}[/tex][tex]\Rightarrow f\approx7.26\cdot10^{14}Hz[/tex]So, the frequency of the ligth is approximately 7.26*10^14 Hz.
Now, the energy will be:
[tex]E=(6.63\cdot10^{-34}m^2Kg/s)(7.26\cdot10^{14}/s)\Rightarrow E\approx4.81\cdot10^{-19}m^2Kg/s^2[/tex][tex]\Rightarrow E\approx4.81\cdot10^{-19}m^2Kg/s^2\cdot(J/m^2Kg/s^2))\Rightarrow E\approx4.81\cdot10^{-19}J[/tex]And the energy is approximately 4.81*10^-19 J.