Given two points, the equation of the line in slope form can be obtained using this equation
[tex]\frac{y_2-y_1}{x_2-x_1}\text{ = }\frac{y_{}-y_1}{x_{}-x_1}[/tex]Now we can name the points
x1 = 2, y1 = 8
x2 = 4 , y2 =9
These coordinates can then be substituted into the equation
[tex]\frac{9-8}{4-2}\text{ =}\frac{y\text{ - 8}}{x\text{ - 2}}[/tex][tex]\begin{gathered} \frac{1}{2}\text{ = }\frac{y\text{ - 8}}{x\text{ - 2}} \\ \\ x-2\text{ = 2 (y - 8)} \\ \\ x\text{ - 2 = 2y - 16} \end{gathered}[/tex]x - 2 + 16 = 2y
2y = x - 2 +16
2y = x + 14
Divide both sides by 2
y = x/2 + 14/2
[tex]y\text{ = }\frac{x}{2}\text{ + 7}[/tex]This is the equation in slope-intercept form
where the slope = 1/2