When we have a radical, we can simplify it by the rule:
[tex]\sqrt[]{ab}=\sqrt[]{a}\sqrt[]{b}[/tex]So, we have to break down 500 into simpler radicals until we have a radical that can't be broken down. Let's simplify Root(500).
[tex]\sqrt[]{500}=\sqrt[]{50}\sqrt[]{10}[/tex]Now, we can break down Root(50) further.
[tex]\begin{gathered} \sqrt[]{50}\sqrt[]{10} \\ =\sqrt[]{25}\sqrt[]{2}\sqrt[]{10} \end{gathered}[/tex]Now, let's break down Root(10) also, thus we have:
[tex]\begin{gathered} \sqrt[]{25}\sqrt[]{2}\sqrt[]{10} \\ =\sqrt[]{25}\sqrt[]{2}\sqrt[]{5}\sqrt[]{2} \end{gathered}[/tex]We can see:
• Root(25) is 5
,• Also Root(2)*Root(2) is 2 by using the rule:
[tex]\sqrt[]{a}\sqrt[]{a}=a[/tex]Thus, we finally have:
[tex]\begin{gathered} \sqrt[]{25}\sqrt[]{2}\sqrt[]{5}\sqrt[]{2} \\ =5(2)\sqrt[]{5} \\ =10\sqrt[]{5} \end{gathered}[/tex]