1) Balance the chemical equation.
[tex]4NH_{3(g)}+5O_{2(g)}\rightarrow4NO_{(g)}+6H_2O_{(g)}[/tex]2) Moles of oxygen needed to produce 18.5 mol NO.
The molar ratio between NO and O2 is 4 mol NO: 5 mol O2.
[tex]mol\text{ }O_2=18.5\text{ }mol\text{ }NO*\frac{5\text{ }mol\text{ }O_2}{4\text{ }mol\text{ }NO}=23.125\text{ }mol\text{ }O_2[/tex]3) Volume of oxygen required.
3.1- List the known and the unknown quantities.
Sample: O2.
Temperature: 31 ºC.
Pressure: 988 mmHg.
Moles: 23.125 mol.
ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)
Volume: unknown
3.2- Set the equation.
[tex]PV=nRT[/tex]3.3- Converting units.
Temperature: ºC to K.
[tex]K=ºC+273.15[/tex][tex]K=31\text{ }ºC+273.15=304.15\text{ }K[/tex]Pressure
760 mmHg = 1 atm.
[tex]atm=988\text{ }mmHg*\frac{1\text{ }atm}{760\text{ }mmHg}=1.3\text{ }atm[/tex]3.4- Plug in the known quantities in the ideal gas equation and solve for V (liters).
[tex](1.3\text{ }atm)(V)=(23.125\text{ }mol\text{ }O_2)(0.082057\text{ }L*atm*K^{-1}*mol^{-1})(304.15\text{ }K)[/tex][tex]V=\frac{(23.125molO_2)(0.082057L*atm*K^{-1}*mol^{-1})(304.15K)}{1.3\text{ }atm}[/tex][tex]V=443.958\text{ }L[/tex]The volume of O2 required is 444 L.